top of page

Publication

Newest arXiv

  • Shousuke Ohmori , arXiv:2405.02848

  • Shousuke Ohmori and Junichi Takahashi, arXiv:2403.00234

【Research Paper (peer reviewed)】

  1. Shousuke Ohmori and Yoshihiro Yamazaki:Dynamical Properties of Discrete Negative Feedback Models,AIP Conference Proceedings, in press.

  2. Shousuke Ohmori, Yoshihiro Yamazaki, Tomoyuki Yamamoto, and Akihiko Kitada:Construction of topological representation of geometric patterns using Cantor self-similar set,AIP Conference Proceedings, in press.

  3. Akihiko Kitada, Shousuke Ohmori, Yoshihiro Yamazaki, and Tomoyuki Yamamoto:Difference in topological characteristics between Cantor middle-third set and Sierpinski carpet,AIP Conference Proceedings, in press.

  4. Shigeki Matsutani, Shousuke Ohmori, Kenji Hiranabe, and Eiichi Hanyuda : Conway's law, revised from a mathematical viewpoint, Discrete Mathematics, Algorithms and Applocations, in press.

  5. Yoshihiro Yamazaki and Shousuke Ohmori:Ultradiscretization in discrete limit cycles of tropically discretized and max-plus Sel'kov models, JSIAMLetters, Vol.16, pp.85-88, 2024.9.

  6. Shousuke Ohmori and Yoshihiro Yamazaki:A generalization for ultradiscrete limit cycles in a certain type of max-plus dynamical systems, Journal of Mathematical Physics,Vol.65,pp.082705, 2024.8.

  7. Shousuke Ohmori and Yoshihiro Yamazaki:On dynamical connection between continuous and tropical discretized dynamical systems in one-dimensional, RIMS Kokyuroku Bessatsu B94 pp.55-63, 2023.11.

  8. Yoshihiro Yamazaki and Shousuke Ohmori:Emergence of ultradiscrete states due to phase lock caused by saddle-node bifurcation in discrete limit cycles,Progress of Theoretical and Experimental Physics, Vol.2023, pp.081A01, 2023.8.

  9. Shousuke Ohmori and Yoshihiro Yamazaki:Types and stability of fixed points for positivity-preserving discretized dynamical systems in two dimensions,JSIAM Letters, Vol.15, pp.73-76, 2023.8.

  10. Shousuke Ohmori and Yoshihiro Yamazaki:Relation of stability and bifurcation properties between continuous and ultradiscrete dynamical systems via discretization with positivity: One dimensional cases,Journal of Mathematical Physics,Vol.64,pp.042704, 2023.4.

  11. Shousuke Ohmori and Junichi Takahashi:Rigged Hilbert space approach for non-Hermitian systems with positive definite metric,Journal of Mathematical Physics,Vol.63,pp.123503, 2022.12.

  12. Shousuke Ohmori and Yoshihiro Yamazaki:Poincare map approach to limit cycles of a simplified ultradiscrete Sel’kov model,JSIAM Letters, Vol.14, pp.127-130, 2022.8.

  13. Yoshihiro Yamazaki and Shousuke Ohmori:Periodicity of Limit Cycles in a Max-Plus Dynamical System,Journal of the Physical Society of Japan, Vol.90, pp.103001, 2021.10

  14. Shousuke Ohmori and Yoshihiro Yamazaki:Ultradiscrete Bifurcations for One Dimensional Dynamical Systems,Journal of Mathematical Physics,Vol.61, pp.122702, 2020.12.

  15. Shousuke Ohmori,Yoshihiro Yamazaki, Tomoyuki Yamamoto, and Akihiko Kitada:Universal topological representation of geometric patterns,Physica Scripta, Vol.94, pp.105213, 2019.8.

  16. Shousuke Ohmori and Yoshihiro Yamazaki:Comments on Statistical Properties for Cellular Automaton Models with Probabilistic Global and Asymmetric Local Rules,Journal of the Physical Society of Japan, Vol.88, pp.105001, 2019.10.

  17. Yoshihiro Yamazaki and Shousuke Ohmori:Ultradiscritization of Reaction-Diffusion Type Partial Differential Equations Exhibiting Pulse Propagation,Nanosystems: Physics, Chemistry, Mathematics, Vol.8, pp.38-41, 2017.2.

  18. Akihiko Kitada, Shousuke Ohmori,and Tomoyuki Yamamoto:Existence of a Polycrystal Filled with an Arbitrary Finite Number of Self-Similar Crystals,Journal of the Physical Society of Japan, Vol.85, pp.045001, 2016.4.

  19. Shousuke Ohmori and Yoshihiro Yamazaki:Cellular Automata for Spatiotemporal Pattern Formation from Reaction-Diffusion Partial Differential Equations,Journal of the Physical Society of Japan, Vol.85, pp.014003, 2016.1.

  20. Shousuke Ohmori and Yoshihiro Yamazaki:Discussion of a stochastic cellular automaton model for the dynamics of bistable units with global and asymmetric local interactions,Advance in Science, Technology and Enviromentology, Special Issue on New Challenges in Complex Systems Science, Vol. B11, pp.157-158, 2015.11.

  21. Shousuke Ohmori and Yoshihiro Yamazaki:Derivation of a Stochastic Cellular Automaton Model for the Dynamics of Bistable Units with Global and Asymmetric Local Interactions,Progress of Theoretical and Experimental Physics, Vol.2014, pp.083A01, 2014.8.

【Others】

  1. 大森祥輔:一般位相空間論を用いた物質の幾何学的構造の表現について,九州大学マス・フォア・インダストリ研究所(IMI),材料科学における幾何学と代数III MIレクチャーノート, Vol.89, pp.128-144, 2022.9.

  2. Shousuke Ohmori:Topologically Representation of Cantor Cube Model for Geometric Patterns, 京都大学数理解析研究所(RIMS)講究録, Vol.2209, pp.75-79, 2021.6.

  3. Shousuke Ohmori and Yoshihiro Yamazaki:Ultradiscrete equations for bifurcations in low-dimensional dynamical systems,京都大学数理解析研究所(RIMS)講究録, Vol.2223, pp.44-49, 2021.6.

  4. 大森祥輔, 山崎義弘:超離散方程式におけるホップ分岐,津田塾大学, 数学・計算機科学研究所報, Vol.42, pp.103-108, 2021.1.

  5. 大森祥輔:A product space of {0,1} of an abstract polycrystal, 京都大学数理解析研究所(RIMS)講究録, Vol.2064, pp.53-58, 2018.1.

  6. Akihiko Kitada, Tomoyuki Yamamoto, Shousuke Ohmori:A mathematical summary common to the two papers(CMSR 2 1),5)),早稲田大学凝縮系物質科学研究所紀要, Condensed-Matter Science Reports, Vol.2, pp.11, 2014.5.

  7. Akihiko Kitada, Tomoyuki Yamamoto, Shousuke Ohmori:On a difference in topological nature between Cantor middle-third set and Sierpinski carpet,早稲田大学凝縮系物質科学研究所紀要, Condensed-Matter Science Reports, Vol.2, pp.5-10, 2014.5.

  8. Akihiko Kitada, Tomoyuki Yamamoto, Shousuke Ohmori:A dendrite generated from {Adenine, Guanine, Cytosine, Thymine}^$¥Lambda$, Card $¥Lambda$ > $¥aleph$,早稲田大学凝縮系物質科学研究所紀要, Condensed-Matter Science Reports, Vol.2, pp.1-4, 2014.5.

  9. Akihiko Kitada, Tomoyuki Yamamoto, Shousuke Ohmori:On a difference in topological nature between Cantor middle-third set and Sierpinski carpet,早稲田大学凝縮系物質科学研究所紀要, Condensed-Matter Science Reports, Vol.1, pp.1-8, 2013.3.

bottom of page